US009483482B2

a2 United States Patent

Moore et al.

US 9,483,482 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) PARTITIONING FILE SYSTEM NAMESPACE (56) References Cited
(71) Applicants:Joseph Moore, Wichita, KS (US); U.S. PATENT DOCUMENTS
Ziling Huang, Lincoln, NE (US) .
2006/0174037 Al* 82006 Bernardi HO4L 29/12207
L 709/245
(72) Inventors: Joseph Moore, Wichita, KS (US); 2009/0271412 Al* 10/2009 Lacapra GOGF 17/30206
Ziling Huang, Lincoln, NE (US) 2013/0151492 Al* 6/2013 Kirihata GOGF 17/30097
707/696
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US)
. . . . OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Co-pending U.S. Appl. No. 14/181,819 of Moore et al., filed Feb.
U.S.C. 154(b) by 215 days. 17, 2014.
(21) Appl. No.: 14/181,811 * cited by examiner
(22) Filed: Feb. 17, 2014 . . .
Primary Examiner — Anh Tai Tran
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Haynes and Boone, LLP
US 2015/0234846 A1 Aug. 20, 2015
57 ABSTRACT
51) Int. CL
(1) In Technology is disclosed for partitioning a namespace of a
GO6F 17/30 (2006.01) . - .
(52) US. CL large scale data storage service. In various embodlments, .the
cpe GOGF 17/30097 (2013.01); GOGF 17/302 technology receives a file path; employs. a hashing function
(2013.01); GOGF 17/30094 (2013.01) to produce a hash value for the received file path; and
5% Field of Classifi . S’ h ’ identifies a name node handling the produced hash value,
(58) CII(: c ol Llassl caél(;)glF le;/gc() 097 GOGF 17/30094: wherein the name node is configured to communicate with
"""""""""" > GOGF 17/30 2’ one or more data nodes for handling file requests on the file
th.
USPC oo 707/747 P
IPC o GOG6F 17/30097, 17/30094, 17/302

client computing device

See application file for complete search history.

401 402a
master name node

heartbeat 404

402b
name node 1

update 405

20 Claims, 16 Drawing Sheets

; 400

403b
data node 1

403a
data node 0

heartbeat 406b

update 407

heartbeat 406a

block report 408b

block report 408a

file request 410

partition table 411
file request 412

file info response 414

data request 416

Y

data response 418

data request 420

data response 422

US 9,483,482 B2

Sheet 1 of 16

Nov. 1, 2016

U.S. Patent

(G1y 401id) T ‘DI

001
X Juaip
X901
apou aweu Z wa|p
<0l qa0l
L sl

B901

u apou ejep oo Z |pou ejep | 8pou ejep 0 @pou ejep

uy0ol 9901 a0l ey0l

US 9,483,482 B2

Sheet 2 of 16

Nov. 1, 2016

U.S. Patent

(1Y d01d) 7 ‘DI

uonesidde VE][B)
e 90l
0ve ¢ 201Aep Bunndwoo
w Xo0|[q oo L 320|q 020|q opou ejep
wiegee qcee r444 ¥0l
0ce Z 901nep Bunndwoo
abew wa)sAsaly Bo| upoe opou aweu
90¢ ¥0c c0l

00c

| 921n0p Bunndwod

US 9,483,482 B2

Sheet 3 of 16

Nov. 1, 2016

U.S. Patent

ooe

m abelo)s

meoe

A apou sweu

801

AZ0L

£ O

| obelio)s

0 @belo)s

qcoe

BC0E

u apou ejep

uy0ol

| 8pou ejep

a0l

0 @pou ejep

| 8pou aweu

0 8pou aweu

qcol

ecol

ey0l

US 9,483,482 B2

Sheet 4 of 16

Nov. 1, 2016

U.S. Patent

Vv OIA

ao1nap Bunndwoo o

ZZy osuodsal ejep
™
Oczp isenbal ejep
8l osuodsal ejep >
) 9L+ 1senbai elep
¥l osuodsal ojul oyl
ZL¥ 1senbai oy
Ll alqej uoniped T
BgOY Hodas %o0[q > 0L 3¥senbai oy
BQ0Y Jeequesy d
agoy Hodau xo0|q 755 vepdn
qooy leaquesy " Go¥ 21epdn
Y0 jeaqueay
| @pou ejep 0 epou ejep | @pou sweu SpouU aweu J9)sew
qe0v =401 4 qcov EeZ0v (4017
oovy

US 9,483,482 B2

Sheet 5 of 16

Nov. 1, 2016

U.S. Patent

IS ODIA
s S — ¥ $400(q L P!l &pou ejep ¥2Z — 0 $400(q 0 P! 8pou ejep Zpaly
0SS 88 9tS s s
asuodsas uopewIoul 31}
oS
q< ‘OId
see L plely 9¢ — GC $190[q 0 p! oy ¥Z — 0 $420[9 0 P! 8pou ejep
0es 8¢s 9¢s ¥es 2cs
0zs
Ve ‘DIA
veo snjels uonezin eyep Auoedeo ejep pl 8poU BlEp
809 909 09 c0s
00s

yeagueay

uodal yo0|q

U.S. Patent Nov. 1, 2016 Sheet 6 of 16 US 9,483,482 B2

600
602
=D

604

retrieve configuration
information

606

determine number of available
name nodes

is
master name node
available?

N 610

elect master name node

)

612
(return)

FIG. 6

U.S. Patent Nov. 1, 2016 Sheet 7 of 16 US 9,483,482 B2

700
702
=D

704
create partition table based on
number of available name
nodes

706

transmit partition table to nodes

C) 708
return

FIG. 7

US 9,483,482 B2

Sheet 8 of 16

Nov. 1, 2016

U.S. Patent

008

[]
8 ‘OIA
¥'0'891°¢6l 4444 0000 N\~ 918
€089l'¢6l 4449 0008 ™~ V18
¢'0'89l°¢6l 4447 0]0]0}4 ™\ Cl8
1'0'891°¢61L 444€ 0000 ™\~ 018
pus ues
apou aweu f /
\ obuel anjea ysey f
vo8 woﬁ co8 bow

U.S. Patent Nov. 1, 2016 Sheet 9 of 16 US 9,483,482 B2

900

902
(start)

904

receive file path

906

apply hashing function on file
path

908

identify name node based on
hash

() 910
return

FIG. 9

U.S. Patent Nov. 1, 2016 Sheet 10 of 16 US 9,483,482 B2

1000
1002
K < start)

1004

compute has value for directory

1006

identify name node based on
hash value using partition table

1008
C return

FIG. 10

U.S. Patent Nov. 1, 2016 Sheet 11 of 16 US 9,483,482 B2

remove directory

1102
(start)

1104

1100

receive directory name

1106

check permissions on directory

does client have

1114
permission? retumn error

1110

remove directory record from
parent directory

1112
return success

FIG. 11

U.S. Patent Nov. 1, 2016 Sheet 12 of 16 US 9,483,482 B2

create directory

1200
1202
=D

1204

receive directory name and
attributes

1206

check permissions on parent
directory

does client have

1214
permission? retumn error

Y 1210
create record in parent
directory

1212
return success

FIG. 12

U.S. Patent Nov. 1, 2016 Sheet 13 of 16 US 9,483,482 B2

remove file
1300
1302
(start)
1304
receive file path
1306

check permissions on file path

does client have

1318
permission? retumn error

1310
identify blocks
1312
remove blocks
1314
remove file record from
directory

1316
(return success)

FIG. 13

U.S. Patent Nov. 1, 2016 Sheet 14 of 16 US 9,483,482 B2

create file

1400
1402
1 (start)

1404

receive file path and attributes

1406

check permission on directory

does client have
permission?

1416
return error

1410

compute hash value for file
path and identify name node

1412

request blocks

1414
Geturn list of bIocks)

FIG. 14

U.S. Patent Nov. 1, 2016 Sheet 15 of 16 US 9,483,482 B2

read file
1500
1502
(start)
1504
receive file path
1506

check permission on directory

does client have

1514
permission? retumn error

Y 1510
identify blocks corresponding
to file

1512
Geturn list of bIocks)

FIG. 15

U.S. Patent

US 9,483,482 B2

Nov. 1, 2016 Sheet 16 of 16
;1600
block_id r_1J602 r_1J604
0 31132 63

block number

hash value

FIG. 16

US 9,483,482 B2

1
PARTITIONING FILE SYSTEM NAMESPACE

BACKGROUND

It is now generally thought that the amount of data that is
stored annually in a year is equal to all of the combined data
stored in all previous years. To make sense of some types of
data, companies rely on more than just traditional storage
and relational database solutions.

One class of large scale data storage (“LSDS”) applica-
tions that some companies rely on to store and analyze
voluminous data is termed “NoSQL,” and a specific
example application is Hadoop, which is an open-source
software for storing and analyzing a large volume of data on
clusters of computing devices.

LSDS applications can include a multi-node cluster of
computing devices that together operate a storage or file
system layer. For example, Hadoop has a Hadoop Distrib-
uted File system (“HDFS”) layer. HDFS stores large files
across the clusters of multiple computing devices (“nodes”).
To coordinate data storage, HDFS relies on a “primary name
node.” The primary name node stores a file system index and
other metadata that enables client computing devices to
identify one or more data nodes that store data. For example,
when a client computing device stores data, it requests a
storage area from the primary name node. The primary name
node identifies a data node and the client computing device
then provides the data to be stored to the identified data
node. When a client computing device reads data, it trans-
mits an identifier to the primary name node (e.g., a uniform
resource locator) and in response, the primary name node
identifies one or more data nodes that store the requested
data. The requesting client computing device then requests
the data from the identified data nodes.

Thus, the primary name node serves as a single point of
failure for the entire HDFS. Moreover, the primary name
node can become a bottleneck when it services large quan-
tities of data storage requests, e.g., because it is a single
server and usually stores the index and/or other metadata
only in memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an environment in
which a large scale data storage service may operate in some
embodiments.

FIG. 2 is a block diagram illustrating components of a
large scale data storage service, consistent with various
embodiments.

FIG. 3 is a block diagram illustrating an environment in
which the disclosed technology may operate in some
embodiments.

FIG. 4 is a message flow diagram illustrating messages
exchanged by various components of the disclosed technol-
ogy, consistent with various embodiments.

FIGS. 5A-5C are block diagrams illustrating portions of
various messages exchanged by components of the disclosed
technology, consistent with various embodiments.

FIG. 6 is a flow diagram illustrating a routine for selecting
a master name node, consistent with various embodiments.

FIG. 7 is a flow diagram illustrating a routine for creating
and distributing a partition table, consistent with various
embodiments.

FIG. 8 is a table diagram illustrating a partition table,
consistent with various embodiments.

15

25

35

40

45

60

65

2

FIG. 9 is a flow diagram illustrating a routine for identi-
fying a name node based on a file path, consistent with
various embodiments.

FIG. 10 is a flow diagram illustrating a routine for
identifying a name node using a partition table, consistent
with various embodiments.

FIG. 11 is a flow diagram illustrating a routine for
removing a directory, consistent with various embodiments.

FIG. 12 is a flow diagram illustrating a routine for
creating a directory, consistent with various embodiments.

FIG. 13 is a flow diagram illustrating a routine for
removing a file, consistent with various embodiments.

FIG. 14 is a flow diagram illustrating a routine for
creating a file, consistent with various embodiments.

FIG. 15 is a flow diagram illustrating a routine for reading
a file, consistent with various embodiments.

FIG. 16 is a block diagram illustrating portions of a block
identifier, consistent with various embodiments.

DETAILED DESCRIPTION

Technology is disclosed for partitioning a name node
namespace of large scale data storage (“LSDS”) service,
e.g., by using a hashing function on file paths and dividing
the namespace according to ranges of hashed values (“the
technology”). A namespace identifies a set of possible val-
ues. In various embodiments, the technology implements
multiple name nodes, wherein each name node stores
indexes and/or other metadata for a portion of the
namespace assigned to it. As an example, if file paths are
hashed to 32-bit values, the namespace ranges from 0000 to
FFFF in hexadecimal notation. If four name nodes operate
in an environment, each name node may be assigned one
fourth of the total namespace, e.g., 0000-3FFF, 4000-7FFF,
8000-BFFF, and CO00-FFFF. A master name node handles
assignment and distribution of the namespace by creating
and distributing a namespace partition table (“partition
table”). The partition table indicates the namespace distri-
bution, e.g., by associating hash value ranges with name
nodes. Name nodes may be identified by a network identi-
fier, e.g., a server name, Internet Protocol (“IP”) address, etc.
The master name node may respond at a “well-known”
server name, 1P address, port number, etc. If the master name
node is no longer operating, e.g., because it has crashed, one
of the other name nodes may take over, e.g., after a voting
process, priority queue information, etc. When a client
computing device needs to write data or read data, the client
computing device can first receive the partition table; hash
the file path (or folder path, also referred to herein as “file
path™) for the location corresponding to the file or folder to
be written or read; identify from the received partition table
which name node to transmit a file request to; and transmit
the file request to the identified name node. In various
embodiments, identification and/or transmission of the file
requests occurs at a protocol layer (e.g., a protocol layer
employed by the LSDS service).

LSDS services can employ name nodes and data nodes. A
name node receives file requests and identifies data nodes
that can satisfy the file requests. In various embodiments,
name nodes and/or data nodes store associations between
block numbers (e.g., identifiers for locations where data is
stored) and hash values. As an example, block numbers may
be encoded with hash values. In some embodiments, name
nodes may store associations between file paths, data nodes,
and block identifiers. As an example, to satisty a file request,
a name node may determine which data nodes store blocks
corresponding to the requested file and identify the data

US 9,483,482 B2

3

nodes to the client computing device that transmitted the
request. Alternatively, the name node may service file
requests by intermediating requests between client comput-
ing devices and data nodes, thereby eliminating communi-
cations directly between client computing devices and data
nodes. As an example, client computing devices may trans-
mit requests to name nodes associated with the file paths (as
identified by a correspondence between a hash value of the
file paths in the partition table), and the name nodes may
service file requests (e.g., to write or read data) by forward-
ing such requests to data nodes, and data from data nodes to
the client computing devices that transmitted the requests.

In some embodiments, the namespace assigned to name
nodes may be further partitioned into multiple subpartitions
(also referred to as “buckets”). Each subpartition may be
stored as a separate file system (e.g., HDFS file), e.g., at a
redundant shared storage system. As an example, the
namespace assigned to each of four name nodes may be
further divided into eight subpartitions, thereby creating a
total of 32 subpartitions. Each subpartition (or a subset of the
subpartitions) may be stored on storage systems available
via a network to all of the name nodes (e.g., because they are
stored on storage systems commercialized by NetApp, Inc.).
If one of the name nodes is no longer available to service
requests from client computing devices, e.g., because of
crashing, overloading, or other issues, the other name serv-
ers subsume the subpartitions previously handled by the
name node that is no longer available. As an example,
suppose name node 0 (“master name node™) originally
handled subpartitions 0-7, name node 1 originally handled
subpartitions 8-15, name node 2 originally handled subpar-
titions 16-23, and name node 3 originally handled subpar-
titions 24-31; and then name node 1 becomes unavailable.
Then, the master name node (name node 0) could redistrib-
ute subpartitions 8-15 across itself and name node 2 and
name node 3, e.g., so that name node 0 subsequently handles
subpartitions 0-10, name node 2 subsequently handles sub-
partitions 11-21, and name node 3 subsequently handles
subpartitions 22-31. The technology can easily facilitate this
redistribution by simply causing the respective name nodes
to mount additional file systems. Thus, the technology is
capable of load balancing database partitions “on the fly”
without having to redistribute data across storage systems,
servers, etc. As is known in the art, mounting a file system
is accomplished by invoking various commands or applica-
tion program interfaces (APIs) provided by underlying oper-
ating systems. As an example, the LINUX operating system
provides a “mount” command to mount file systems. Name
nodes can determine that a name node has become unavail-
able by detecting that no inter-name node “heartbeat” mes-
sage has been received, e.g., during a specified time period.
If a name node that previously handled a subpartition is no
longer available, then the technology can assign the subpar-
tition to a different name node. The subpartitioning can
optimize load-balancing for situations not involving failover
for failed name nodes. Without sub partitioning, one of the
surviving name nodes would assume double the workload of
the remaining surviving name nodes (e.g., one surviving
node takes over the entire failed partition). Additionally,
even in non-failure scenarios, subpartitioning can provide
load-balancing benefit. Although the hash-based partition
can ensure that the namespace (e.g., pathnames) are equally
divided between the name nodes (e.g., partitions), the size of
the managed data can be dominated by the total number of
data blocks for the files in the partitions. With subpartition-
ing, the overall load can be balanced, e.g., by skewing the
partitions of the name space assigned to various partitions/

25

35

40

45

50

4

name nodes to achieve an overall balance of data managed
between the various name nodes. For example, one of the
name nodes (e.g., the primary name node) can have a
smaller partition than other name nodes by assignment of
fewer or smaller subpartitions. In various embodiments, the
technology stores the files that are capable of being mounted
in a redundant, highly available manner, e.g., at storage
servers. As an example, NetApp, Inc. commercializes stor-
age servers that provide multiple levels of redundancy such
that even when some components fail, other components can
still satisfy storage requests (e.g., to write data or read
previously stored data).

Several embodiments of the described technology are
described in more detail in reference to the Figures. The
computing devices on which the described technology may
be implemented may include one or more central processing
units, memory, input devices (e.g., keyboard and pointing
devices), output devices (e.g., display devices), storage
devices (e.g., disk drives), and network devices (e.g., net-
work interfaces). The memory and storage devices are
computer-readable storage media that may store instructions
that implement at least portions of the described technology.
In addition, the data structures and message structures may
be stored or transmitted via a data transmission medium,
such as a signal on a communications link. Various com-
munications links may be used, such as the Internet, a local
area network, a wide area network, or a point-to-point
dial-up connection. Thus, computer-readable media can
comprise computer-readable storage media (e.g., “non-tran-
sitory” media) and computer-readable transmission media.

Turning now to the figures, FIG. 1 is a block diagram
illustrating an environment 100 in which a large scale data
storage service may operate. The environment 100 can
include a name node 102, multiple data nodes 104, and
multiple client nodes 106. In the illustrated example, there
are data node 0 (104a), data node 1 (1045), data node 2
(104c¢), and data node n (104#); and client 1 (106a), client 2
(1065), and client x (106x). These various components of the
environment 100 can be interconnected, e.g., via a network
108. The network 108 maybe an intranet, the Internet, or any
other type of network. The environment 100 can also include
other components that are not illustrated.

FIG. 2 is a block diagram illustrating components of a
large scale data storage service, consistent with various
embodiments. The components can include a computing
device 1 (200), a computing device 2 (220), and a computing
device 3 (240). The computing device 200 may be config-
ured as a name node 102, e.g., by including name node
software, an edit log 204, and a file system image 206. The
name node software may respond to requests from client
computing devices, e.g., to read and/or store data. The edit
log 204 may store additions or edits to data, e.g., until the
additions and/or edits are “committed” to the database. The
file system image 206 may be a description of where the data
is stored, e.g., at data nodes. In various embodiments, the
name node may include multiple file system images (not
illustrated).

The computing device 220 may be configured as a data
node 104, e.g., by including data node software, and mul-
tiple blocks 222, e.g., block 0 (222a), block 1 (22254), and
block m (222m). In various embodiments, the multiple
blocks may store data.

The computing device 240 may be configured as a client
computing device, e.g., by including an application 242, that
is capable of communicating with a name node 102, e.g., via
a network 100 (illustrated in FIG. 1).

US 9,483,482 B2

5

FIG. 3 is a block diagram illustrating an environment 300
in which the disclosed technology may operate in some
embodiments. The environment 300 can include multiple
name nodes 102, e.g., 1024, 1025, and 102y. As an example,
the environment 300 can include a master name node and
other name nodes. One of the multiple name nodes may be
selected (e.g., “elected” or otherwise configured) to be the
master name node. The master name node may be identified
at a well-known location, e.g., a known IP address, socket
number, server name, etc. The other name nodes may handle
one or more partitions of the namespace, e.g., as identified
by a namespace partition table. The environment 300 can
also include multiple data nodes 104, e.g., 104a, 1045, and
104n. The name nodes may identify one or more data nodes
that store data corresponding to a file path. In various
embodiments, the data nodes may store the data at local data
store devices (e.g., hard disk drives, solid state drives, etc.)
and/or at data storage systems, e.g., at storage server 0
(302a), storage server 1 (302b4), and storage server w
(302w). Examples of data nodes and storage servers are
storage computing devices commercialized by various stor-
age server vendors, e.g., NetApp, Inc.

FIG. 4 is a message flow diagram illustrating messages
400 exchanged by various components of the disclosed
technology, consistent with various embodiments. The mes-
sages 400 can be exchanged via various components of the
environment 300, e.g., a client computing device 401, a
master name node 402a, a second name node 40254, a first
data node 4034, and a second data node 4035. The master
name node 402¢ may receive heartbeat messages 404 from
other name nodes, e.g., the second name node 4025. The
heartbeat messages 404 may be received at various times,
e.g., on a periodic basis, and may indicate not only that the
sending name node is presently functional, but may also
include various data, e.g., status, throughput, utilization,
network status, data node status, etc. Name nodes may also
receive heartbeat messages from data nodes with which the
name nodes are connected. As examples, the second name
node 4026 may receive heartbeat messages 4065 from the
second data node 4035 and the master name node 402a may
receive heartbeat messages 406a from the first data node
403a. The heartbeat messages 406a and 40656 may be
received at various times, e.g., on a periodic basis, and may
indicate not only that the sending data nodes are presently
functional, but may also include various data, e.g., status,
throughput, available data storage capacity, utilization, net-
work status, storage server status, data storage device status,
etc. Thus, the technology can employ the heartbeat messages
404, 4064, and 4065 to determine the current “health” of the
system and take remediation measures, if needed. As an
example, if the second name node 40254 is unable to transmit
the heartbeat messages 404 to the master name node 402a,
the second name node 4025 may initiate a process to select
a new master node. In various embodiments, in addition to
or instead of heartbeat messages between name nodes (e.g.,
heartbeat 404), the technology may employ inter-name node
communications, e.g., update 405 and update 407. The
inter-name node communications can serve additional heart-
beat functions. As an example inter-name node communi-
cations can be used for directory operations (e.g., to hash a
directory’s file path and its constituent files to disparate
partitions), filesystem operations, load balancing, failure
detection, and failure recovery.

Name nodes may sometimes receive block reports from
data nodes with which they are connected. As examples, the
master name node 4024 and the second name node 4024
receive block reports 408a and 4085 from the first data node

10

15

20

25

30

35

40

45

50

55

60

65

6

403a and the second data node 4035, respectively. In various
embodiments, the block reports can indicate which blocks
are being used, which blocks are free, correspondences
between blocks and file paths, hash values associated with
the blocks, etc. The data nodes may transmit the block
reports at various times, e.g., as a part of heartbeat messages,
in response to data requests, or at other times.

Upon receiving an initial file request 410 from a client
computing device 401, the master name node 402a may
respond by transmitting 411 a partition table. The partition
table is described in further detail below in relation to FIG.
8. In various embodiments, the master name node 402a may
also satisfy the file request 410. In various embodiments,
upon receiving the partition table, the client computing
device 401 may determine from the partition table that the
second name node 4025 is presently configured to satisfy the
file request and may transmit 412 the file request to the
second name node 4025. In various embodiments, the sec-
ond name node 4025 may satisfy the file request. In various
embodiments, the second name node 40256 may respond to
the file request by returning 414 a file information response
message. The file information response message may indi-
cate one or more data nodes and the blocks they store that
would satisty the file request. The client computing device
may then send data requests 416 and 420 to the indicated
data nodes 403a and 4035, respectively, and receive in
response data responses 418 and 422. The data responses
may include the data that was originally requested by the
client computing device 401.

FIGS. 5A-5C are block diagrams illustrating portions of
various messages exchanged by components of the disclosed
technology, consistent with various embodiments. FIG. 5A
is a block diagram illustrating portions of a heartbeat mes-
sage 500. The heartbeat message 500 can correspond to the
heartbeat message that a data node transmits to a name node.
The heartbeat message 500 can include a data node identifier
field 502, a data capacity field 504, a data utilization field
506, and a status field 508. The data node identifier field 502
can identify the data node that transmitted the heartbeat
message 500, e.g., by using an IP number, server name, etc.
The data capacity and utilization fields 504 and 506, respec-
tively, can indicate how much storage space exists, how
much is used, how it is used (e.g., compacted, encrypted,
etc.), and so forth.

FIG. 5B is a block diagram illustrating portions of a block
report message 520. The block report message 520 can
include a data node identifier field 522, block identifier fields
(e.g., 524 and 528), and file identifier fields (e.g., 526 and
530). The data node identifier field 522 can identify the data
node that transmitted the block report message 520, e.g., by
using an [P number, server name, etc. The block identifier
fields and file identifier fields can together identify corre-
spondences between blocks in storage and files. As an
example, “file id 0” is stored at blocks 0-24, and “file id 17
is stored at block 25-36. In various embodiments, the file
identifiers may be stored as file paths, hash values, etc.

FIG. 5C is a block diagram illustrating portions of a file
information response message 540. The file information
response message 540 may be transmitted by a name node
to a client computing device, e.g., in response to a message
requesting data. The file information response message 540
can include a file identifier field 542, and pairs of data node
identifier and block identifier fields, e.g., 544 and 546; 548
and 550; etc. In some embodiments, after a client computing
device receives a file information response message 540, the
client computing device can request data from the indicated
data nodes, e.g., by specifying the indicated data blocks. In

US 9,483,482 B2

7

some embodiments, the file information response message
may contain data node identifiers and the client computing
devices may merely indicate the file paths or hash values to
request data.

FIG. 6 is a flow diagram illustrating a routine 600 for
selecting a master name node, consistent with various
embodiments. The routine 600 begins at block 602. At block
604, the routine 600 retrieves configuration information. The
configuration information can provide various information,
e.g., name nodes, data nodes, connections, etc. At block 606,
the routine 600 determines the number of available name
nodes, e.g., based on the retrieved configuration informa-
tion. At decision block 608, the routine 600 determines
whether a master name node is available. If a master name
node is available, the routine 600 returns at block 612.
Otherwise, the routine 600 continues at block 610, where it
elects a master name node. As an example, a first name node
to determine that the master name node is unavailable may
broadcast to all the other name nodes a message that it is to
become the master name node. If it is indeed the first name
node to broadcast such a message, it may be identified to be
the master name node. The routine 600 then returns at block
612.

Those skilled in the art will appreciate that the logic
illustrated in FIG. 6 and described above, and in each of the
flow diagrams discussed below, may be altered in a variety
of ways. For example, the order of the logic may be
rearranged, substeps may be performed in parallel, illus-
trated logic may be omitted, other logic may be included,
etc.

FIG. 7 is a flow diagram illustrating a routine 700 for
creating and distributing a partition table, consistent with
various embodiments. The routine 700 begins at block 702.
At block 704, the routine 700 creates a partition table based
on the number of available name nodes, e.g., as indicated in
the configuration information described above in relation to
FIG. 6. At block 706, the routine 700 transmits the created
partition table to all the other name nodes. The routine then
returns at block 708. In various embodiments, the routine
may also transmit the created partition table to other com-
puting devices.

FIG. 8 is a table diagram illustrating a partition table 800,
consistent with various embodiments. The partition table
800 can indicate a hash value range 802 that specifies a
partition and a name node 804 that handles the specified
partition. The partition can be specified as beginning at a first
hash value 806 and ending at a second hash value 808. As
an example, a first partition 810 begins at a hash value 0000
and ends at hash value 3FFF, a second partition 812 begins
at hash value 4000 and ends at hash value 7FFF, a third
partition 814 begins at hash value 8000 and ends at hash
value BFFF and a fourth partition 816 begins at hash value
CO000 and ends at hash value FFFF (hash values in hexa-
decimal). In general, partitions may have substantially equal
size, but various sizes may be specified, e.g., based on
compute or storage capacities or other limitations. In various
embodiments, the name node identifiers (column 804) can
be specified as IP numbers, server names, etc.

While FIG. 8 illustrates a table whose contents and
organization are designed to make them more comprehen-
sible by a human reader, those skilled in the art will
appreciate that actual data structures used by the facility to
store this information may differ from the table shown, in
that they, for example, may be organized in a different
manner, may contain more or less information than shown,
may be compressed and/or encrypted, etc.

5

10

15

20

25

30

40

45

50

55

60

65

8

FIG. 9 is a flow diagram illustrating a routine 900 for
identifying a name node based on a file path, consistent with
various embodiments. The routine 900 begins at block 902.
At block 904, the routine 900 receives a file path. The file
path may be specified, e.g., as a location of a directory, a
location of a file, etc., using a uniform resource locator
(“URL”), server message block (“SMB”) path, etc. At block
906, the routine 900 applies a hashing function on the
received file path. A hash function is an algorithm that maps
data of arbitrary length to data of a fixed length. The values
returned by a hash function are called hash values. As an
example, the technology may use a hashing function that
maps file paths to 32-bit values. In various embodiments, the
hash values may be evenly distributed across the namespace.
There are various known techniques for generating hash
values, and the technology may be capable of operating with
any or all such known techniques. At block 908, the routine
900 may identify a name node based on the hash value. At
block 910, the routine returns, and can provide the identified
name node. In various embodiments, the routine 900 may be
used in lieu of a partition table, e.g., when initially deter-
mining where to transmit file requests.

FIG. 10 is a flow diagram illustrating a routine 1000 for
identifying a name node using a partition table, consistent
with various embodiments. The routine 1000 begins at block
1002. At block 1003, the routine 1000 receives a file path.
At block 1004, the routine 1000 computes a hash value
based on the received file path. At block 1006, the routine
1000 identifies a name node, e.g., by looking up the hash
value in a partition table. The routine 1000 returns at block
1008 and can provide the identified name node.

FIG. 11 is a flow diagram illustrating a routine 1100 for
removing a directory, consistent with various embodiments.
The routine 1100 begins at block 1102. At block 1104, the
routine 1100 receives a directory name. At block 1106, the
routine 1100 checks permissions on the directory, e.g., using
an access control list or other security mechanism. At
decision block 1108, the routine 1100 determines whether
the client has sufficient permissions to remove the identified
directory. If the client does not have permissions, the routine
1100 returns an error at block 1114. However, if the client
has sufficient permissions, the routine 1100 continues at
block 1110. At block 1110, the routine 1100 removes the
directory record corresponding to the directory to be
removed from a parent directory. The routine 1100 indicates
success and returns at block 1112.

FIG. 12 is a flow diagram illustrating a routine 1200 for
creating a directory, consistent with various embodiments.
The routine 1200 begins at block 1202. At block 1204, the
routine 1200 receives a directory name and attributes, e.g.,
a name for the new directory, security tributes, etc. At block
1206, the routine 1200 checks permissions on a parent
directory for the directory that was requested to be created.
At decision block 1208, the routine 1200 determines
whether the client has sufficient permissions to create the
directory. If the client does not have sufficient permissions,
the routine 1200 returns an error at block 1214. If, however,
the client has sufficient permissions, the routine 1200 con-
tinues at block 1210, where it creates a record in the parent
directly. The routine 1200 then returns an indication of
success at block 1212.

FIG. 13 is a flow diagram illustrating a routine 1300 for
removing a file, consistent with various embodiments. The
routine 1300 begins a block 1302. At block 1304, the routine
1300 receives a file path. At block 1306, the routine 1300
determines whether the client has sufficient permissions to
remove the file located at the specified file path. At decision

US 9,483,482 B2

9

block 1308, if the client has sufficient permissions, the
routine 1300 continues at block 1310. Otherwise, the routine
1300 returns an error at block 1318. At block 1310, the
routine 1300 identifies blocks associated with the file to be
removed. At block 1312, the routine 1300 indicates that the
identified blocks have been removed, e.g., by setting values
in a block allocation table, file allocation table, or other
indicator of associations between blocks and files. At block
1314, the routine 1300 removes the record corresponding to
the file from the directory. At block 1316, the routine 1300
returns an indication of success.

FIG. 14 is a flow diagram illustrating a routine 1400 for
creating a file, consistent with various embodiments. The
routine 1400 begins a block 1402. At block 1404, the routine
1400 receives a file path and associated attributes, e.g., file
name, file size, security attributes, etc. At block 1406, the
routine 1400 determines whether the client has sufficient
permissions to create the file. If at decision block 1408 the
client has sufficient permissions, the routine 1400 continues
at block 1410. Otherwise, the routine returns an error at
block 1416. At block 1410, the routine 1400 computes a
hash value for the file path and identifies, e.g., based on the
computed hash value, a name node. At block 1412, the
routine requests blocks, e.g., a sufficient number of blocks
for the file to be created. At block 1414, the routine returns
a list of the assigned blocks.

FIG. 15 is a flow diagram illustrating a routine 1500 for
reading a file, consistent with various embodiments. The
routine 1500 begins at block 1502. At block 1504, the
routine 1500 receives a file path. At block 1506, the routine
1500 determines whether the client has sufficient permis-
sions to read the file. At decision block 1508, if the client has
sufficient permissions, the routine 1500 continues at block
1510. Otherwise, the routine 1500 returns an error at block
1514. At lot 1510, the routine identifies blocks correspond-
ing to the received file path. At block 1512, the routine 1500
returns the list of identified blocks.

FIG. 16 is a block diagram illustrating portions of a block
identifier 1600, consistent with various embodiments. The
block identifier 1600 can be provided in a block report,
stored at a data node, or otherwise used to indicate associa-
tions between blocks and hash values. In various embodi-
ments, a block identifier 1600 is assigned a 64-bit value,
with 32 bits identifying a block number 1602 and the
remaining 32 bits identifying a hash value 1604 correspond-
ing to a file path with which the block is associated. Thus,
for example, a database that indexes on the stored hash
values would be able to quickly identify blocks associated
with a particular hash value (and corresponding file path).

In various embodiments a method performed by a com-
puting device for partitioning a namespace of a large scale
data storage service is disclosed, comprising: receiving a file
path; employing a hashing function to produce a hash value
for the received file path; and identifying a name node
handling the produced hash value, wherein the name node is
configured to communicate with one or more data nodes for
handling file requests on the file path. The method can
produce a partition table identifying associations between
hash values and name nodes. The method can transmit the
produced partition table in response to receiving a message
from a client computing device. The produced partition table
can be transmitted to a second name node other than a
primary name node that produced the partition table. In the
event that the name node that produced the partition table is
unavailable, the second name node can become the primary
name node. The primary name node can be identified at a
well-known network address so that client computing

10

15

20

25

30

35

40

45

50

55

60

65

10

devices can transmit initial file requests to the primary name
node. The name node can be identified in a message
exchanged using a protocol layer employed by the LSDS
service.

In various embodiments, a system is disclosed, compris-
ing: a master name node component configured to receive a
file request, produce a partition table, and transmit the
produced partition table, wherein the partition table identi-
fies at least a second name node component so that recipients
of the produced partition table can identify, based on a file
path, to which of the at least two name node components to
transmit file requests; and one or more data node compo-
nents connected to the at least two name node components,
wherein the data node components are configured to respond
to data requests corresponding to the file requests. The
partition table can identify correspondences between hash
values and name nodes. When one of the name nodes has
failed, a portion of the namespace previously in the partition
of' the failed name node can be reassigned to a different name
node. The failed name node can be identified by its failure
to transmit heartbeat messages. The portion of the
namespace previously in the partition of the failed name
node can be apportioned to other name nodes. The
namespace can be identified as a range of integer values. The
namespace can be identified by a 32-bit value. The
namespace can be identified by producing a hash value
based on a file path. The data nodes may identify blocks
using a block identifier. The block identifier can be encoded
with a hash value. The hash value can correspond to a hash
function applied to a file path, wherein a block identified by
the block value is assigned to the file path.

In various embodiments, a computer-readable storage
device storing instructions is disclosed, comprising instruc-
tions for receiving a file path; instructions for employing a
hashing function to produce a hash value for the received file
path; and instructions for identifying a name node handling
the produced hash value, wherein the name node is config-
ured to communicate with one or more data nodes for
handling file requests on the file path. The computer-read-
able storage device can further comprise instructions for
producing a partition table identifying associations between
hash values and name nodes.

In various embodiments, a method is disclosed for
employing subpartitions of a partitioned namespace of a
large scale data storage service, comprising: creating at least
two subpartitions from a partitioned namespace, wherein the
partitioned namespace corresponds to at least two different
name nodes of the LSDS service; and storing data corre-
sponding to each subpartition as a separate file. The method
can further comprise determining that a first name node of
the at least two different name nodes is no longer available;
identifying subpartitions previously handled by the first
name node; selecting a second name node of the at least two
different name nodes; and causing the second name node to
begin handling at least a subset of the identified subparti-
tions. The method can mount a separate file corresponding
to at least one of the subpartitions of the subset of partitions.
The method can further comprise mounting the separate file
as a file system. The method can further comprise storing the
separate file at a storage server that is accessible by multiple
name nodes. The method can further comprise storing the
separate file at a storage server that is accessible by multiple
data nodes.

In various embodiments, a computer-readable storage
device is disclosed for storing computer-executable instruc-
tions, comprising: instructions for creating at least two
subpartitions from a partitioned namespace, wherein the

US 9,483,482 B2

11

partitioned namespace corresponds to at least two different
data nodes of the LSDS service; and instructions for storing
data corresponding to each subpartition as a separate file.
The instructions can further comprise determining that a first
data node of the at least two different data nodes is no longer
available; identifying subpartitions previously handled by
the first data node; selecting a second data node of the at
least two different data nodes; and causing the second data
node to begin handling at least a subset of the identified
subpartitions. The instructions can further comprise mount-
ing a separate file corresponding to at least one of the
subpartitions of the subset of partitions. The instructions can
further comprise mounting the separate file as a file system.
The instructions can further comprise storing the separate
files at a storage server that is accessible by multiple data
nodes. The instructions can further comprise storing the
separate files at a storage server that is accessible by multiple
data nodes.

In various embodiments, a system is disclosed, compris-
ing a first name node and a second name node, wherein the
name nodes are configured to receive a file path and identify
where in a set of data nodes data corresponding to the file
path is stored, wherein each name node has a partition of a
namespace corresponding to a set of possible hash values;
and two or more files, each file corresponding to a subpar-
tition of the partition of the namespace and configured to be
mounted as a file system. When a name node is no longer
available, a different one of the name nodes can mount as a
file system a file previously handled by the name node that
is no longer available. The files can be mounted by data
nodes and when it is determined that a data node is no longer
available, a different one of the data nodes mounts as a file
system a file previously handled by the data node that is no
longer available. Contents of a heartbeat message can indi-
cate that the data node is no longer available. The contents
can indicate bandwidth, throughput, or utilization. The data
node can be determined to be no longer available after a
specified time period lapses without having received a
heartbeat message. The file system can be a Hadoop file
system. The system can further comprise a storage server
reachable via a network by name nodes and data nodes,
wherein the storage server stores at least a subset of the two
or more files in a redundant, highly available manner.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims. Accordingly, the invention is not
limited except as by the appended claims.

We claim:

1. A method performed by a computing device for parti-
tioning a namespace of a large scale data storage (“LLSDS”)
service, comprising:

receiving a file path;

receiving a partition table by a client computing device

from a first name node of a plurality of name nodes;
employing, by the client computing device, a hashing
function to produce a hash value for the file path; and
identifying, from the partition table, a second name node
associated with the produced hash value;

providing a file request by the client computing device to

the second name node; and

receiving from the second name node an identification of

a data node corresponding to a block associated with
the file request.

20

25

30

35

40

45

50

55

60

12

2. The method of claim 1, wherein the partition table
identifies associations between hash values and name nodes.
3. The method of claim 1, wherein the partition table is
produced by the first name node and is further transmitted to
the second name node.
4. The method of claim 3, wherein in the event that the
first name node that produced the partition table is unavail-
able, the second name node becomes a primary name node.
5. The method of claim 3, wherein the primary name node
is identified at a well-known network address so that client
computing devices can transmit initial file requests to the
primary name node.
6. The method of claim 1, wherein the name node is
identified in a message exchanged using a protocol layer
employed by the LSDS service.
7. The method of claim 1, further comprising performing
the data transaction by the client device upon the data node.
8. A computer system, comprising:
a memory containing a non-transitory machine readable
medium comprising machine executable code having
stored thereon instructions for performing a method of
managing a namespace;
a processor coupled to the memory, the processor con-
figured to execute the machine executable code to
cause the processor to:
receive a file request from a client device,
produce a partition table,
transmit the produced partition table to the client device
in response to the received file request, wherein the
partition table identifies at least one name node
component so that recipients of the produced parti-
tion table can identify, based on a file path, to which
of the at least one name node components to transmit
file requests,

re-receive the file request from the client device, based
on the client device determining from the partition
table that a file path associated with the file request
is further associated with the computer system, and

based on re-receiving the file request, perform at least
one process from the group consisting of: provide a
response identifying a data node associated with the
file request and forward the file request to the data
node associated with the file request.

9. The system of claim 8, wherein the partition table
identifies correspondences between hash values and name
nodes.

10. The system of claim 8, wherein when one of the at
least one name node components has failed, a portion of the
namespace previously in the partition of the failed name
node component is reassigned to a different name node
component.

11. The system of claim 10, wherein the failed name node
component is identified by its failure to transmit heartbeat
messages.

12. The system of claim 10, wherein the portion of the
namespace previously in the partition of the failed name
node component is apportioned to another name node com-
ponent.

13. The system of claim 10, wherein the namespace is
identified as a range of integer values.

14. The system of claim 13, wherein the namespace is
identified by a 32-bit value.

15. The system of claim 13, wherein the namespace is
identified by producing a hash value based on a file path.

16. The system of claim 8, wherein the data node iden-
tifies blocks using a block identifier.

US 9,483,482 B2

13

17. The system of claim 16, wherein the block identifier
is encoded with a hash value.

18. The system of claim 17, wherein the hash value
corresponds to a hash function applied to a file path, wherein
a block identified by the block value is assigned to the file
path.

19. A non-transitory machine readable medium storing
instructions for performing a method comprising machine
executable code which when executed by at least one
machine, causes the machine to:

provide a file request to a first name node, wherein the file

request has an associated a file path;

in response to the file request, receive a partition table

from the first name node;

employ a hashing function to produce a hash value for the

file path;

identify, from the partition table and the hash value, a

second name node handling the produced hash value,
wherein the second name node is configured to com-
municate with one or more data nodes for handling file
requests on the file path; and

receive from the second name node an identifier of at least

one of the one or more data nodes.

20. The non-transitory machine readable medium of claim
19, wherein the partition table identifies associations
between hash values and name nodes.

#* #* #* #* #*

10

15

20

25

14

